10

SAME BOTNET, SAME GUYS, NEW CODE

SAME BOTNET, SAME GUYS,
NEW CODE

Pierre-Marc Bureau
ESET, spol. s r.o0., Aupark Tower, 16th Floor,
Einsteinova 24, 851 01 Bratislava, Slovak Republic

Email bureau@eset.sk

ABSTRACT

Win32/Kelihos first appeared at the very end of 2010. There
are many things that make this malware stand out. First of all,
it uses a custom peer-to-peer network protocol. It also shares
many similarities in terms of code and endgame with
Win32/Nuwar (the infamous Storm worm) and
Win32/Waledac. These resemblances lead us to think the same
gang is behind the creation, and possibly the operation, of all
three pieces of malware.

The first variants of Win32/Kelihos to be discovered were, at
best, in the alpha stage of development. Over recent months,
we were able to closely track the new iterations, which
allowed us to determine the primary purposes of this malware:
spam campaigns and information stealing.

In this paper, we give an overview of the functionalities of
Win32/Kelihos and expose its peer-to-peer network protocol.
We also describe the evolution of the malware functionalities
over time and conclude with a comparison between this
malware and its two predecessors.

FUNCTIONALITY OVERVIEW

Win32/Kelihos is programmed in C++ and uses the object-
oriented programming paradigm. Each executable is statically
linked with many libraries, including OpenSSL and Boost.
The average size of an unpacked executable is 1.3 megabytes.
Considering the size of its code, it is hard to make an
exhaustive list of the characteristics of this malware.

In this section, we give a general overview of the different
characteristics of the Win32/Kelihos malware family. These
characteristics help understand the objectives fulfilled by this
malware family and put some context around its evolution.

Software protection

The first binaries of Win32/Kelihos that were discovered used
the UPX packer to reduce the size of the binary executable. A
few days later, the malware switched to a custom packer. We
think the new software protection layer was outsourced to
someone with deep knowledge of anti-virus engines and with
the ability to program a packer straight in assembly language.
This skill set seems distant from the one shown by the main
developers of Win32/Kelihos.

The packer includes various anti-debugging and
anti-emulation tricks. For example, Figure 1 shows a trick seen
in many variants. The first instructions of the program try to
load a file using the LoadLibraryExA API call. The file that
gets loaded is not a standard DLL but rather an executable file.
The file to load varies from one version of the packer to the
other but is usually present on standard Windows installations.
If the LoadLibraryExA call fails, the program simply exits
without unpacking its code, potentially evading emulators
used in anti-virus products.

Propagation

It appears that the initial infection vector used by
Win32/Kelihos was through propagation waves of malicious
links embedded in emails advertising fake greeting cards.
‘When a user follows the malicious link, he is directed to a web
page urging him to download a player for Flash files. Of
course, the downloaded file is a fresh variant of the malware.
Figure 2 shows an example of such a web page being
displayed to the user. The malicious links are based on
domains controlled by the botmaster and generally use fast
flux techniques. The actual payload (HTML content and
executable files) is served by infected hosts acting as proxies
for the command and control server.

Can't view this greeting? Download Flash Player!

Figure 2: Malicious links propagated by email.

At the end of February, Win32/Kelihos started using a new
propagation mechanism: the LNK parsing vulnerability that
was previously exploited by Stuxnet (CVE-2010-2568).
Later variants added the creation of malicious LNK files on
removable drives in an effort to spread to other computers.
More information on the effect of using this exploit usage
can be found in the ‘Code evolution’ section of this paper.

Information stealing

Win32/Kelihos steals various types of information from infected
hosts. It will analyse the hard drive of an infected machine,
parsing a wide range of file formats looking for email addresses.
We believe these addresses are later supplied to other bots to
feed their spam campaigns. Another option would be that they
are sold to other groups. More details on Win32/Kelihos spam
operation can be found in the next section.

Win32/Kelihos also monitors network traffic for HTTP and
FTP credentials. This information-stealing capability is
implemented with the libpcap library. The stolen credentials
are later used to upload content promoting fake pharmaceutical
material.

GE4A0E96

LOAD_LIBRARY_AS_DATAFILE
L _

Figure 1: Anti-emulation trick used in the packer.

Spam

Win32/Kelihos uses a template-based spam engine. For each
spam run, an infected host receives a template with a list of
words to be used for each variable found in the template.
Each variable’s name starts with the ‘%”F’ marker. Figure 3
shows a spam template to advertise pharmaceutical products.

The spam engine also receives a list of email addresses to
spam. We believe these email addresses are gathered by the
malware when it inspects the hard drives of infected systems.

Received: from " CBx Pz R3—6 % :quertyuiopasdfghjklzxcubnm™x ™%
g /:R‘i S F“endmalluer # with SHTP id »"¥x"C5x"R28-368
U5 "%

Message— ID (/"0/"U6"z EPA 5 B P P 11 7 S

% C4x " Fmynames % %" {x"Fnames"%xE@%x" Fdomains"x%>
wr

Fpharma™x
<“R3I0-688"x "%
rsion: 1.8
Content—Type: textsplain;
format=f loved;
charset="%"Fcharset™x";
reply—type=original
Content—Transfer—Encoding: 7hit
—Priority: 3
K—MSMail-Priority: Normal
K—Mailer: Microsoft Outlook Express 6.00.x"C7%*Foutver.6"x"x
X—MimeOLE: Produced By Microsoft MimeOLE U6.88.x"U7"x

L Jx“Fpharma™x »“Pmirabella_links2"x"x

Figure 3: Spam template.

In most cases, the spam is promoting fake pharmaceutical
material with a compelling message and a link to an HTML
page. These HTML pages are usually hosted on compromised
websites that merely act as a redirection to the real sites
selling the products. Figure 4 shows an example of a website
promoted by Win32/Kelihos.

SAME BOTNET, SAME GUYS, NEW CODE

 Information on other peers participating on the network
* Information on domain names used by the botnet.

Hosts with a private IP address (workers) will only
communicate with infected hosts having a public IP address
(proxies).

The peer-to-peer network protocol imitates the HTTP protocol.
Peers communicate with each other by sending an HTTP
‘GET’ request, requesting an HTML file with a random name.
Data that is sent to the peer is appended to the GET request,
which is not HTTP-compliant. Figure 5 shows a network
capture of the peer-to-peer communication between two peers.

000EEEEE 47 45 54 20 2f 49 30 56 75 2e 68 74 6d 20 48 54 GET /IGV u.htm HT
006000160 54 50 2f 31 2e 31 Od Ga 48 6f 73 74 3a 20 31 36 TP/1.1.. Host: 10
00EEEE28 39 2e 31 39 36 2e 31 34 33 2e 31 33 37 0d 0a 43 9.196.14 3.137..C
00600030 6f 6e 74 65 6e 74 2d 4c 65 6e 67 74 68 3a 20 31 ontent-L ength: 1
000EEE48 35 35 34 Od Ga 55 73 65 72 2d 41 67 65 6e 74 3a 554..Use r-Agent:
006000560 20 4d 6Ff 7a 69 6c 6c 61 2f 34 2e 30 20 28 63 6f Mozilla /4.0 (co
00EEEEEE 6d 70 61 74 69 62 6c 65 3b 20 4d 53 49 45 20 38 mpatible ; MSIE 8
00600070 2e 30 3b 20 57 69 6e 64 6f 77 73 20 4e 54 20 36 .0; Wind ows NT 6
00CEEE8E 2e 31 3b 20 54 72 69 64 65 6e 74 2f 34 2e 30 29 .1; Trid ent/4.0
006000SE Od Ba 6d Ba Gans

00EEEES4 01 62 @1 61 61 61 62 @1 f1 G5 00 @0 60 0O 00 60

00EB00A4 01 ea 63 00 00 01 06 B0 06O 3f 77 60 60 41 Ga 06
00CEEEB4 00 6d b8 5f 6f 67 33 4b 7b 34 74 la ba 59 b8 51 ..._
006000C4 a0 39 2b 62 dc 87 ec ff 8c 18 1f aB 67 4a Se dO .

D4 ce 2a eb f7 24 Ga 36 81 B8f 61 b8 16 63 69 48 c4 .
00CEEOE4 ab 90 90 f6 3c 01 e4 2o 38 6e c2 af e9 6c ce f5
00CEEEEF4 b6 26 53 27 d4a fc 56 b7 2d 2e 19 9f Bf a3 98 fd .

1Pharmacy ABOUT US CONTACT US

O ALL DESTINATIONS WORLDWIDE!

ALLPRODUCTSLIST | HOWTO ORDER FAQ.

EXPERIENCE CELEBRATOI
PISGQUNTS NOW!

POWERPACK

USD GBP CAD EUR AUD GHF Most Popular Products

o e Viagraas onas GAD 1.94 [rorenio
i Viagra, containing Sidonall Gitate, onablos many mon with orectie dysfunction o achiovo or
Suntan an pect pai 1 oaxual 30ty S bacoming avaiabs Vigra e ooen 90 e
iroaiment fr orsctio dysfunciion
» Viagra *
» Clalls: * Clalis as low as CAD 1.84 m
* Viagra Supor Activer * @ S —
. s a highiy effectie ora
m:‘ b : known as impotence. Recommended for use as needed, Ciais can v daily medication.
+ Clals Super Active+ -
» Viagra Super Force -
+ Gialls Soft Tabs. - Viagra Super Actlive+ as low as CAD 2.93 [t
s aas * ‘medeaton ezl
S ponata - increased stamin and sensitiy to stinuiaton.
» Maxaman *
» Super Active ED Pack .
M Viagra Professional as low as GAD 4.04 [more o }

* Viow all products. a cinically

Activat iow, it prowide: e

Figure 4: Pharmaceutical website advertised through spam.

Besides pharmaceutical spam, we observed that the botnet
has been used to send spam advertising some stocks, probably
for a pump-and-dump scheme. We also observed that an
infected host will send a feedback report on the spam run to
its command and control server, reporting which email
addresses were reachable.

Peer-to-peer network protocol

Win32/Kelihos’s peer-to-peer network protocol uses TCP port
80 and is only used by a subset of hosts that have a public IP
address, also called proxies. The peer-to-peer protocol is used
to exchange the following information:

¢ Information on ‘Job Servers’ which deliver tasks to
infected systems

Figure 5: Peer-to-peer packet capture.

The data exchanged in the peer-to-peer protocol is encrypted.
The encryption algorithms used are DES and Blowfish. The
keys used are hard coded in the malware. After decryption,
the data is deserialized into objects. The serialization
algorithm packs data into a list of items that can be nested.
The type and size of each item is also serialized. The
serialization code used in Win32/Kelihos is publicly
documented on the following webpage: http://www.rsdn.ru/
article/files/Classes/Serialization2.xml.

To keep up-to-date information on the peer-to-peer network
after a reboot, the list of peers known to an infected system is
stored in the HCKU\Software\Google\ID3 registry key. Peers
frequently exchange peer-related information in order to keep
good connectivity.

Alongside the workers and proxies, a third part of the botnet
architecture plays a major role: the job servers. These servers
are used to deliver tasks to infected hosts (mostly spam jobs)
and collect information back from them (list of reachable
email addresses, stolen information, etc.). Each time a worker
wants to contact a job server, it will first send an HTTP
request to one of the proxies in its peer list. The proxy will
simply forward this request to a job server and send back the
server’s response. Proxies will also use other proxies to
contact a job server, instead of contacting them directly.

CODE EVOLUTION

The first variants of Win32/Kelihos released on the Internet
were in an early stage of development. The code included
hundreds of debug messages that were printed to the debug
output. Figure 6 shows the log of Win32/Kelihos infecting a
new host. We can see the version of the bot as well as
compatibility checks for earlier versions of the code that
could have already been on the system.

The infection ratio of Win32/Kelihos has been very limited
compared to large infections like Win32/Conficker and other
big malware families. On the other hand, we have been able
to see the impact of code modifications on the detection ratio

11

12

SAME BOTNET, SAME GUYS, NEW CODE

+ |T1me |Debug Print

] 0.00000000 [2948] 14.02.2011 11:28:09
1 0.00008185 [2948] 14.02.2011 11:28:09
2 0.00013382 [2948] 14.02.2011 11:28:09
3 0.760006590 [2948] 14.02.2011 11:28:10
4 0.76011282 [2948] 14.02.2011 11:28:10
5 0.76025498 [2948] 14.02.2011 11:28:10
6 0.76030499 [2948] 14.02.2011 11:28:10
7 0.76042289 [2948] 14.02.2011 11:28:10
8 0.76048797 [2948]

9 0.76054305 [2948] 14.02.2011 11:28:10
10 0.76258993 [2948] 14.02.2011 11:28:10
11 1.75010931 [2948] 14.02.2011 11:28:11
12 1.75017750 [2948] 14.02.2011 11:28:11
13 2.17856932 [2948] 14.02.2011 11:28:12
14 2.17995954 [2948] 14.02.2011 11:28:12
15 2.18004060 [2948] 14.02.2011 11:28:12
16 2.18008232 [2948] d. port = 80

17 2.18015027 [2948] 14.02.2011 11:28:12
18 2.18015027 [2948] client: 00000000-000
19 2.18019247 [2948] 0000000 67.160.19.3:
] 2 16018747 170487 ~liant -

4

Init logging. Level=3 Log path=C:.>.

Client 0.0.54 started
[vo]Llooing for old client.
Looing for old client

Found shared cbject
Constructed terminating object
Openning process. . .

getProcess Hame = “DeviceHarddiskVolumel™Docum
ings~AdministratorsDesktop~f lashd . exe

GetExitCodeProcess 259

TerminateProcess 1

QOpenning process. . .
Openning process failed

Timing zone[find and kill old client=s] mns=2172

Autorun entry writed success.

Config loaded 0k.

own_id=b#96b535-056b—4dda-58a9

Loaded bootstrap list:

0-0nooo-0000-00000
an

ANNANAAN_AANA_NANA_NANA_AANANANANNAN 24 2C 104 22

ol

Figure 6: Debug output of an early version of Win32/Kelihos.

08

0o

[

[

oo | | | |

|

|
!

|
‘\ \|M

f

Apr

May

Figure 7: Detection ratio for Win32/Kelihos over time (2011).

for this malware family. Figure 7 shows the evolution of the
detection statistics collected from ESET’s ThreatSense system
from 1 January 2011 until 31 May 2011. This figure shows
that the malware propagation increased significantly after the
inclusion of the CVE-2010-2568 (LNK) exploit into the
malware at the end of February.

The encryption of the peer-to-peer protocol used by
Win32/Kelihos also evolved over time. The first versions of
the protocol did not use encryption. Encryption was gradually
added, starting with one layer of Blowfish and two additional
layers of DES later on. To make the data harder to decipher,
the labels for the variable names have also been hashed. With
this new hashing, it becomes much harder to follow which
variable does what. A work-around for this obfuscation is to
reuse labels found in older versions of the code and hash them
to create a dictionary of words corresponding to hashes. It is
then possible to replace the hash values with their original
text form when analysing the ‘obfuscated’ data.

WIN32/NUWAR, WIN32/WALEDAC,
WIN32/KELIHOS; SAME MALWARE?

In this section, we compare the functionalities and peer-to-
peer protocols used by the Win32/Nuwar, Win32/Waledac and

‘Win32/Kelihos families to understand the commonalities
between the three.

Functionality comparison

There are many similarities between Win32/Kelihos and its
two predecessors. Table 1 shows a summary of similarities
found in the binaries.

Win32/Nuwar | Win32/Waledac | Win32/Kelihos
Propagation |Spam & links |Spam & links Spam & links
Information FTP/SMTP FTP/SMTP
stealing
Fast flux X X X
Kernel mode | X
component
Persistence | Registry key | Registry key Registry key
Spamming | Pump and Pharmaceutical | Stock
dump o
Pharmaceutical
Pharmaceutical

Table 1: Summary of similarities found in the binaries.

We see that the objective of all three malware families is to
send unsolicited emails; this is clearly how the operators are
funding their operation and profiting from it. Furthermore, the
variable names and spam templates are the same for all three
families — this suggests that the same gang is behind all three
operations.

To our knowledge, there are not many botnets using fast-flux
nowadays; it is interesting to note that all three families make
use of this technique. Finally, we note some strong
similarities in the material that is spammed by the botnet.

Peer-to-peer comparison

The peer-to-peer network protocol used by Win32/Kelihos is
one of its most interesting characteristics. Table 2 shows a
comparison of the peer-to-peer protocol used by the three
malware families.

Win32/Nuwar | Win32/Waledac | Win32/Kelihos
Peer-to-peer | Kademlia XML over Serialized over
protocol HTTP HTTP
Peer-to-peer | UDP, variable | TCP 80 TCP 80
network port
traffic
Peer-to-peer | XOR Zlib + AES + Zlib + DES +
protection base64 blowfish
Peer-to-peer | Static Rotating Static
‘keys’
Multi-tiered | X X X
architecture

Table 2: Comparison of the peer-to-peer protocol used by the
three malware families.

From a theoretical point of view, the reliability against attacks
and data distribution efficiency make Kademlia the best
protocol of all three. On the other hand, this protocol uses
UDP and can easily be blocked in an enterprise environment.
From a stealth perspective, exchanging data over TCP port 80
is better and we think this is why the programmers have
moved to this new protocol.

We observe that the programmers have also improved their
usage of cryptography to reduce the possibility of data
poisoning or even interception. Moving from XOR to AES is
clearly an evolution. In terms of key exchange, we observed
that it was too computationally expensive to change
cryptographic keys in Win32/Waledac [3]. We think this is
why Win32/Kelihos is also using hard-coded keys. This is a
clear trade-off between performance and security.

Finally, it is worth mentioning that all three botnets use a
multi-tiered architecture where multiple command and
control proxies are used to share the load and increase
reliability of the botnet.

CONCLUSIONS

The analysis of the Win32/Kelihos malware family, and its
similarities to Win32/Nuwar and Win32/Waledac teach us
many things. First of all, the evolution of malware does not
follow a strict rule of performance. Malware developers must
find the best equilibrium between costs, level of stealth,

SAME BOTNET, SAME GUYS, NEW CODE

security and performance. This is shown by the fact that the
programmers first tried using the Kademlia peer-to-peer
protocol and then moved to a less efficient but much stealthier
custom protocol using TCP port 80.

Our study also shows that malware authors won’t hesitate to
use third-party software components in their programs. In this
case, we observed OpenSSL, zlib and libpcap being used by
the malware. It is also likely that the programmers rented the
service of another group for their packer. This shows that
malware creators and operators are now specializing their
services into ‘niches’ where they are the experts and
outsourcing other areas of development to other groups.

To conclude, Win32/Kelihos should be considered as a
separate malware family from Win32/Nuwar and
Win32/Waledac because it doesn’t have the same code, and
the binaries are entirely different. From a higher-level
perspective though, we should classify all three families as
being part of the same operation where similar strategies and
tactics are being used to infect systems, maintain the botnet,
and bank juicy profits.

ACKNOWLEDGEMENTS

We would like to thank the following people for their help
during the research and in the redaction of this paper: Joan
Calvet, Alexis Dorais-Joncas, Sébastien Duquette, Ddvid
Gabri$ and Witold Gerstendorf.

REFERENCES

[1] Stewart, J. Inside the Storm: Protocols and
Encryption of the Storm Botnet. Black Hat 2008.
http://www.blackhat.com/presentations/bh-usa-08/
Stewart/BH_US_08_Stewart_Protocols_of_the_
Storm.pdf.

2] Sinclair, G.; Nunnery, C.; ByungHoon Kang, B. The
Waledac Protocol: The How and Why. Malware
2009.

3] Calvet, J.; Bureau, P-M.; Fernandez, J.; Marion, J-Y.
Large-scale malware experiments, why, how, and so
what? Proceedings of the Virus Bulletin International
Conference 2010.

[4] Maymounkov, P.; Mazieres, D. Kademlia: A Peer-to-
Peer Information System Based on the XOR metric.
Peer-to-Peer Systems, 2002.

13

